

#### Environmental Information Regulations request - Scoping Our Planet: EIR request

1 message

To: EIR requests at ARIA <info@aria.org.uk>

5 August 2024 at 13:20

Dear Sir or Madam

This is a request for information under the Environmental Information Regulations 2004.

Please confirm whether the final award decisions have been taken for ARIA's Scoping Our Planet project.

https://www.aria.org.uk/scoping-our-planet-opportunity-seeds/

2. Please provide the names of each organisation which has been allocated money under ARIA's Scoping the Planet project.

For each grant/organisation, please also include

a. The value of the grant

b. A summary of the project

c. The research outputs to be delivered

3. Please also state how many proposals were received in total for Scoping Our Planet.

I would be grateful if you could acknowledge receipt of this request.

Thank you for the time and energy you will invest in preparing a response.

Best wishes,

\_\_\_\_\_

Please use this email address for all replies to this request:

Is info@aria.org.uk the wrong address for Environmental Information Regulations requests to Advanced Research and Invention Agency? If so, please contact us using this form: https://www.whatdotheyknow.com/change\_request/new?body=aria

Disclaimer: This message and any reply that you make will be published on the internet. Our privacy and copyright policies:

https://www.whatdotheyknow.com/help/officers

For more detailed guidance on safely disclosing information, read the latest advice from the ICO: https://www.whatdotheyknow.com/help/ico-guidance-for-authorities https://www.whatdotheyknow.com/help/ico-anonymisation-code

Please note that in some cases publication of requests and responses will be delayed.

If you find this service useful as an FOI officer, please ask your web manager to link to us from your organisation's FOI page.

-----



#### Information provided to the requestor

[Note: As the information provided to the requestor was split across multiple documents, ARIA has compiled all information provided to the requestor into this document for ease of access.]

1. Confirmation of whether the final award decisions had been taken for ARIA's Scoping Our Planet project.

"[F]inal award decisions have been taken for <u>ARIA's Scoping Our Planet opportunity seeds</u>."

2. The names of each organisation which has been allocated money under ARIA's Scoping the Planet opportunity seeds. For each grant/organisation: (a) the value of the grant; (b) a summary of the project; (c) the research outputs to be delivered.

Details of awards:

| Party                                        | Context                    | Duration<br>(months) | Total value<br>(£, ex VAT) | Type of<br>award |
|----------------------------------------------|----------------------------|----------------------|----------------------------|------------------|
| Voltitude Limited                            | Scoping Our<br>Planet Seed | 14                   | £497,871                   | Contract         |
| University of St<br>Andrews                  | Scoping Our<br>Planet Seed | 24                   | £499,256                   | Grant            |
| Living Optics                                | Scoping Our<br>Planet Seed | 13                   | £498,156                   | Contract         |
| University of<br>Edinburgh                   | Scoping Our<br>Planet Seed | 24                   | £494,389                   | Grant            |
| Twin Paradox Labs                            | Scoping Our<br>Planet Seed | 24                   | £377,746                   | Contract         |
| Asterisk<br>Laboratories<br>Co-operative Ltd | Scoping Our<br>Planet Seed | 19                   | £499,921                   | Contract         |
| Cranfield<br>University                      | Scoping Our<br>Planet Seed | 12                   | £356,834                   | Grant            |



| University of<br>Southampton | Scoping Our<br>Planet Seed | 30 | £500,000 | Grant |
|------------------------------|----------------------------|----|----------|-------|
| University of<br>Oxford      | Scoping Our<br>Planet Seed | 24 | £499,294 | Grant |
| University College<br>London | Scoping Our<br>Planet Seed | 24 | £499,444 | Grant |
| University of<br>Cambridge   | Scoping Our<br>Planet Seed | 36 | £499,876 | Grant |

#### Project summaries:

https://www.aria.org.uk/opportunity-spaces/scoping-our-planet/scoping-our-planet

Research outputs:

| Applicant                                                                 | Outputs/Milestones                                                                                                                                                                                                                                | Date          |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Asterisk<br>Laboratories<br>Co-Operative<br>Ltd<br>(27 September<br>2024) | Laboratories       -       Incorporate company         Co-Operative       -       Payroll/tax/insurance         Ltd       -       Team tools/website         (27 September       -       Office space         -       Project management planning |               |
|                                                                           | Legally compliant business listed on Companies House<br>with PAYE set up<br>Valid Insurance certificate<br>Compute system operational<br>List of software tools used for business administration<br>and management.                               |               |
|                                                                           | Discovery:<br>- Literature/landscape Review<br>- Identify Collaborators<br>- Nurture Connections Establish most useful<br>outputs to community                                                                                                    | KO + 5 months |

| List of >=5 engaged stakeholders with clearly defined roles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| "Gap analysis" of current observational techniques, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |
| links drawn between our measured properties with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| those gaps.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |
| Model Development:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KO + 9 months                    |
| - Label Dataset in IRIS for cloud classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| - Train DL cloud classifier on labelled data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |
| - Identify Regions of Interest for Prioritisation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |
| <ul> <li>Spectral and spatial cloud analysis for ice and<br/>typical and spatial cloud analysis for ice and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |
| turbulence properties<br>Cloud height model using shadow distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |
| - Cloud height model using shadow distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |
| Performance of individual models against validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |
| data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |
| Computational efficiency of code (wrt time, memory,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |
| Computational efficiency of code (wrt time, memory, FLOPS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |
| FLOPS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |
| FLOPS)<br>Documentation written that identifies model error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |
| FLOPS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |
| FLOPS)<br>Documentation written that identifies model error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | KO + 12 months                   |
| FLOPS)<br>Documentation written that identifies model error<br>families, mitigation strategy for each error<br>Scaled Deployment:<br>- Deploy models on open satellite image                                                                                                                                                                                                                                                                                                                                                                                                    | KO + 12 months                   |
| FLOPS)<br>Documentation written that identifies model error<br>families, mitigation strategy for each error<br>Scaled Deployment:<br>- Deploy models on open satellite image<br>archives                                                                                                                                                                                                                                                                                                                                                                                        | KO + 12 months                   |
| FLOPS)<br>Documentation written that identifies model error<br>families, mitigation strategy for each error<br>Scaled Deployment:<br>- Deploy models on open satellite image                                                                                                                                                                                                                                                                                                                                                                                                    | KO + 12 months                   |
| FLOPS)<br>Documentation written that identifies model error<br>families, mitigation strategy for each error<br>Scaled Deployment:<br>- Deploy models on open satellite image<br>archives                                                                                                                                                                                                                                                                                                                                                                                        | KO + 12 months                   |
| FLOPS)<br>Documentation written that identifies model error<br>families, mitigation strategy for each error<br>Scaled Deployment:<br>- Deploy models on open satellite image<br>archives<br>- Build distribution system                                                                                                                                                                                                                                                                                                                                                         | KO + 12 months                   |
| FLOPS)<br>Documentation written that identifies model error<br>families, mitigation strategy for each error<br>Scaled Deployment:<br>- Deploy models on open satellite image<br>archives<br>- Build distribution system<br>>100 TB of satellite data processed                                                                                                                                                                                                                                                                                                                  | KO + 12 months                   |
| FLOPS)<br>Documentation written that identifies model error<br>families, mitigation strategy for each error<br>Scaled Deployment:<br>- Deploy models on open satellite image<br>archives<br>- Build distribution system<br>>100 TB of satellite data processed<br>Accessibility of online data download and query                                                                                                                                                                                                                                                               | KO + 12 months<br>KO + 18 months |
| FLOPS)<br>Documentation written that identifies model error<br>families, mitigation strategy for each error<br>Scaled Deployment:<br>- Deploy models on open satellite image<br>archives<br>- Build distribution system<br>>100 TB of satellite data processed<br>Accessibility of online data download and query<br>interface                                                                                                                                                                                                                                                  |                                  |
| FLOPS) Documentation written that identifies model error families, mitigation strategy for each error Scaled Deployment: - Deploy models on open satellite image archives - Build distribution system >100 TB of satellite data processed Accessibility of online data download and query interface Analysis & Impact: Work with collaborators                                                                                                                                                                                                                                  |                                  |
| <ul> <li>FLOPS)</li> <li>Documentation written that identifies model error families, mitigation strategy for each error</li> <li>Scaled Deployment: <ul> <li>Deploy models on open satellite image archives</li> <li>Build distribution system</li> </ul> </li> <li>&gt;100 TB of satellite data processed</li> <li>Accessibility of online data download and query interface</li> <li>Analysis &amp; Impact: Work with collaborators <ul> <li>Publish key scientific insights</li> </ul> </li> </ul>                                                                           |                                  |
| FLOPS) Documentation written that identifies model error families, mitigation strategy for each error Scaled Deployment: - Deploy models on open satellite image archives - Build distribution system >100 TB of satellite data processed Accessibility of online data download and query interface Analysis & Impact: Work with collaborators - Publish key scientific insights - Assess outcomes of project                                                                                                                                                                   |                                  |
| <ul> <li>FLOPS)</li> <li>Documentation written that identifies model error families, mitigation strategy for each error</li> <li>Scaled Deployment: <ul> <li>Deploy models on open satellite image archives</li> <li>Build distribution system</li> </ul> </li> <li>&gt;100 TB of satellite data processed</li> <li>Accessibility of online data download and query interface</li> </ul> Analysis & Impact: Work with collaborators <ul> <li>Publish key scientific insights</li> <li>Assess outcomes of project</li> <li>Influence current and future RS approaches</li> </ul> |                                  |



|                                      | >=5 stakeholders either using or planning to use our<br>data for their own work<br>Produce short impact and future possibilities report                                                                                         |                                                         |  |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|
| Cranfield<br>University<br>(December | <ol> <li>Sign collaboration agreement between Cranfield,<br/>Cambridge, and Microsoft (lead: Cranfield)</li> </ol>                                                                                                              | 6 months from<br>signature of the<br>Grant Agreement    |  |
| 2024)                                | <ul><li>2.1 Forward model</li><li>A working forward model for emissions based on real data for methane and other gases (e.g.CO2)</li><li>(Cambridge)</li></ul>                                                                  | 3 months from the<br>first day of the<br>Funding Period |  |
|                                      | <ul><li>2.2 Simulated results</li><li>You will simulate what to expect in the field for realistic use cases, [removed] (Cambridge)</li></ul>                                                                                    | 6 months from the<br>first day of the<br>Funding Period |  |
|                                      | 2.3 Draft instrument specification<br>Results of 2.1 and 2.2 will be synthesised and used to<br>develop a draft instrument specification for emissions<br>measurement [removed] (Cambridge)                                     | 9 months from the<br>first day of the<br>Funding Period |  |
|                                      | 3.1 [removed] and packaging evaluations<br>[removed] design concepts chosen for testing<br>Initial packaging developed for selected [removed]<br>concepts<br>Initial optical characterisation of [removed] (MSR /<br>Cranfield) | 3 months from the<br>first day of the<br>Funding Period |  |
|                                      | 3.2 Portable interrogator system<br>Modular system to interrogate the sensor developed<br>and initially tested using the standard gas cell<br>(Cranfield)                                                                       | 4 months from the<br>first day of the<br>Funding Period |  |



| 3.3 Gas test system Initial results                       | 6 months from the  |
|-----------------------------------------------------------|--------------------|
|                                                           | first day of the   |
| Initial gas test results from combining the outputs from  | Funding Period     |
| 2.1 and 2.2.                                              |                    |
| Initial signal to noise evaluations completed (Cranfield) |                    |
| 3.4 Performance testing                                   | 9 months from the  |
| Testing completed over range of concentrations for        | first day of the   |
| chosen [removed]. (Cranfield)                             | Funding Period     |
| 3.5 Reference tests completed                             | 12 months from the |
| 5.5 Reference lesis completed                             |                    |
| Test plan agreed for a single sensor [removed], test      | first day of the   |
| environment established and tests completed against a     | Funding Period     |
| high-quality reference instrument (Cranfield / MSR)       |                    |
| 3.6 Concept instrument design strategy                    | 12 months from the |
|                                                           | first day of the   |
| Performance (results from 2.4 and 4.1) reviewed           | Funding Period     |
| against fit-for-purpose specification                     | r unung r enou     |
|                                                           |                    |
| Optimised [removed] designs proposed                      |                    |
| Whole system engineering concept proposed                 |                    |
| Strategy for engineering reduction in SWAP and cost       |                    |
| (All partners)                                            | 6 months from the  |
|                                                           | first day of the   |
| 4.1 Digital twin developed                                | Funding Period     |
|                                                           | J J                |
| Model of performance of individual sensor (Cranfield /    |                    |
| MSR)                                                      |                    |
| 4.2 [removed] algorithm proposal                          | 12 months from the |
| Proposal developed for [removed] improvement of           | first day of the   |
| performance in individual sensors                         | Funding Period     |
| (Cambridge/Cranfield / MSR)                               |                    |
|                                                           | Fortnightly        |
| 5.1 Regular project meetings                              |                    |
| Online meetings of project participants (all)             |                    |
| 5.2 Project steering committee                            | Quarterly          |
| Steering committee members representing each partner      |                    |
| Committee maintains IP register and dissemination plan    |                    |
| <b>e</b>                                                  |                    |



|                  | 5.2 Interim internal project conjugat                                                                                                                     | 6 months from the        |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|                  | 5.3 Interim internal project review                                                                                                                       |                          |
|                  | Internal review against milestones / deliverables and on                                                                                                  | first day of the         |
|                  | _                                                                                                                                                         | Funding Period           |
|                  | technical progress (all)                                                                                                                                  |                          |
|                  | 5.4 Internal workshops                                                                                                                                    | 9 months from the        |
|                  |                                                                                                                                                           | first day of the         |
|                  | Workshop to review progress and test plan (all)                                                                                                           | Funding Period           |
|                  | 5.5 Project end review                                                                                                                                    | 12 months from the       |
|                  |                                                                                                                                                           | first day of the         |
|                  | Workshop to review overall project outcomes and way                                                                                                       | ,<br>Funding Period      |
|                  | forward (all)                                                                                                                                             | r unung r onou           |
|                  |                                                                                                                                                           |                          |
|                  |                                                                                                                                                           |                          |
|                  |                                                                                                                                                           |                          |
| Twin Paradox     | Prototyping hardware complete                                                                                                                             | 01.11.25                 |
| Labs             |                                                                                                                                                           |                          |
|                  | Data and command handling                                                                                                                                 | 01.11.25                 |
| (27 Sept 2024)   |                                                                                                                                                           |                          |
|                  | Report on NICE-OHMS performance                                                                                                                           | 01.11.26                 |
|                  |                                                                                                                                                           | 01.11.26                 |
|                  | Report on environmental tolerance                                                                                                                         | 01.11.20                 |
|                  |                                                                                                                                                           |                          |
|                  |                                                                                                                                                           | 20 (01 (0005             |
| Living Optics (6 | COTS System Built                                                                                                                                         | 30/01/2025               |
| September        | POC prototype COTS system build                                                                                                                           |                          |
| 2024)            |                                                                                                                                                           | 00,000,0005              |
|                  | Custom Design Ready                                                                                                                                       | 28/02/2025               |
|                  | Specifications fixed for custom optics procurement,                                                                                                       |                          |
|                  |                                                                                                                                                           |                          |
|                  |                                                                                                                                                           |                          |
|                  | Lead times/Suppliers determined Target specifications                                                                                                     |                          |
|                  | validated with partners                                                                                                                                   |                          |
|                  |                                                                                                                                                           | 28/03/2025               |
|                  | validated with partners<br>Summary Report                                                                                                                 | 28/03/2025               |
|                  | validated with partners<br>Summary Report<br>Summary Report for work package 1 Assesses                                                                   | 28/03/2025               |
|                  | validated with partners<br>Summary Report<br>Summary Report for work package 1 Assesses<br>performance against initial specs and proposed                 | 28/03/2025               |
|                  | validated with partners<br>Summary Report<br>Summary Report for work package 1 Assesses                                                                   | 28/03/2025               |
|                  | validated with partners<br>Summary Report<br>Summary Report for work package 1 Assesses<br>performance against initial specs and proposed                 | 28/03/2025<br>29/04/2025 |
|                  | validated with partners<br>Summary Report<br>Summary Report for work package 1 Assesses<br>performance against initial specs and proposed<br>measurement. |                          |

|                  | Trial Coordination                                      | 30/01/2025                 |
|------------------|---------------------------------------------------------|----------------------------|
|                  |                                                         |                            |
|                  | Partner Selected                                        |                            |
|                  | Trial Planned and key measurements identified.          | 01/06/2025                 |
|                  | Final Project Report                                    | 01/06/2025                 |
|                  |                                                         |                            |
| University of St | Validation of the protocol                              | [removed]                  |
| Andrews          | -                                                       |                            |
|                  | Feasibility report: [removed]                           |                            |
| (27 August       | r u                                                     | r 17                       |
| 2024)            | [removed]                                               | [removed]                  |
|                  |                                                         |                            |
|                  | [removed]                                               | [removed]                  |
|                  |                                                         |                            |
|                  | Scalability Report. [removed]                           |                            |
|                  | Preliminary outdoor feasibility study                   | [removed]                  |
|                  | [removed]                                               |                            |
|                  | [removed]                                               |                            |
|                  |                                                         |                            |
|                  |                                                         |                            |
| University of    | Project initiation                                      | Year 1                     |
| Southampton      |                                                         |                            |
|                  | - Data sets downloaded and stored                       | Approx. 31                 |
| (3 December      | - Data archiving and management plan in-place           | December 2024              |
| 2024)            |                                                         |                            |
|                  | - Necessary computing facilities in-house               |                            |
|                  | Postdoc recruitment                                     | Year 2                     |
|                  | Processing, Analysis, and Standardization               |                            |
|                  | - Finalized hydrographic + micro-structure processing   |                            |
|                  | flow that can intersect with seismic-derived outputs.   |                            |
|                  |                                                         | Year 1 and 2               |
|                  | - Analysis of hydrographic + micro-structure data:      |                            |
|                  | means, variability, time-, and length-scales.           | Approx. 01 October<br>2026 |
|                  | - Finalized seismic processing flow that is agnostic to |                            |
|                  | input data set.                                         |                            |
|                  |                                                         |                            |



|               | - Quantification of ocean-relevant errors for each data    |                    |  |
|---------------|------------------------------------------------------------|--------------------|--|
|               |                                                            |                    |  |
|               | type and output.                                           |                    |  |
|               | - Analysis and interpretation of seismic data: ocean       |                    |  |
|               |                                                            |                    |  |
|               | imagery to identify processes + derived field to           |                    |  |
|               | describe properties.                                       |                    |  |
|               | Dissemination of new scientific knowledge                  | Year 2 and 3       |  |
|               | - Scientific Papers (1-2) in preparation and/or submitted  | Approx. 01 October |  |
|               | to high-impact journals answering Scientific Questions 1   | 2026               |  |
|               | and 2                                                      |                    |  |
|               |                                                            |                    |  |
|               | - Preliminary analysis of sub-surface and satellite data,  |                    |  |
|               | beginning to answer Scientific Question 3.                 |                    |  |
|               | - Research conference attendance (e.g. EGU and Ocean       |                    |  |
|               | Sciences 2026)                                             |                    |  |
|               | Future Planning                                            | Year 3             |  |
|               |                                                            |                    |  |
|               | - Targeted dissemination of results to relevant scientists | Approx. 30         |  |
|               | (e.g. modellers for updating parameterizations, experts    | September 2027     |  |
|               | in satellite data)                                         |                    |  |
|               | - Begin working on analysis for                            |                    |  |
|               | circumpolar/global/regional studies.                       |                    |  |
|               |                                                            |                    |  |
|               | - Publication of scientific articles with follow-on        |                    |  |
|               | dissemination.                                             |                    |  |
|               |                                                            |                    |  |
|               | - Preparing proposal for funding opportunity to scale up   |                    |  |
|               | our project.                                               |                    |  |
|               |                                                            |                    |  |
| University of | Simulation code for rendering images                       | August 2025        |  |
| Oxford        |                                                            |                    |  |
|               | Functional code capable of generating realistic            |                    |  |
| (18 October   | atmospheric images with associated physical properties     |                    |  |
| 2024)         | (water content, droplet size, phase, wind velocity). We    |                    |  |
|               | are aiming to use a grid resolution of 50m, and            |                    |  |
|               | temporal resolution of 30s.                                |                    |  |
|               |                                                            |                    |  |
|               | Training dataset for AI model                              | October 2025       |  |



| [                   |                                                                                                                                                                |                |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|                     | Validated dataset of 100k synthetic images with                                                                                                                |                |
|                     | corresponding physical properties.                                                                                                                             |                |
|                     | Code for training and inference of the AI model                                                                                                                | March 2026     |
|                     | Operational AI model capable of extracting atmospheric                                                                                                         |                |
|                     | properties from image data                                                                                                                                     |                |
|                     | Camera network at Chilbolton                                                                                                                                   | June 2026      |
|                     | Operational cameras including visible-light, polarimetric<br>and infrared. Optimal camera placement and<br>specifications will be determined during simulation |                |
|                     | (Milestone 1)                                                                                                                                                  |                |
|                     | Publication of methods paper at a computer vision,                                                                                                             | September 2026 |
|                     | machine learning or atmospheric physics venue                                                                                                                  |                |
|                     | Submitted paper describing the Next-CAM system and its novel approaches                                                                                        |                |
|                     | Documentation Technical documentation and user guides for the Next-CAM system.                                                                                 | December 2026  |
|                     | Code for inference will be made available on Github.<br>Live data will be accessible on request via hosted server<br>and long-term data archived on ORA.       |                |
|                     | 1                                                                                                                                                              |                |
| UCL                 | 1. Wave breaking variables identified                                                                                                                          | 01.03.25       |
| (8 October<br>2024) | Table of variables as inputs and outputs listed<br>with foreseen ideal frequency/spatial<br>resolutions of measurements/modelling                              |                |
|                     | 2. Collecting existing measurements + bathymetry<br>in AIRS (Aran Islands Research Station)                                                                    | 01.02.25       |
|                     | Files of data collected from past cameras/buoys/sensors. File of local                                                                                         |                |
|                     | bathymetry. In accessible formats.                                                                                                                             |                |



|    | Modelled breaking waves from SPH at AIRS<br>matching existing measurements. Model<br>outputs shared and discussed within<br>WAVECLIM to decide on computational burden<br>and resolution.                                                                           |          |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 4. | Campaigns in Spring 2025<br>Using existing instruments on the station:                                                                                                                                                                                              | 01.12.25 |
|    | relevant timely field measurements. Data shared<br>and discussed within WAVECLIM to decide on<br>precision, measurement timing.                                                                                                                                     |          |
| 5. | Tuning of SPH tuned with new measurements                                                                                                                                                                                                                           | 01.06.25 |
|    | Modelled breaking waves from SPH at AIRS<br>matching early measurements. Model outputs<br>shared and discussed outside WAVECLIM in<br>publication.                                                                                                                  |          |
| 6. | Synthetic observations based on SPH modelling                                                                                                                                                                                                                       | 31.06.25 |
|    | Simplified breaking waves models from SPH at<br>a few categories of shorelines to ultimately<br>represent in the climate model. Model outputs<br>shared and discussed within WAVECLIM to<br>decide on variables resolution/timings for<br>Machine Learning fitting. |          |
| 7. | Exploration of existing + new<br>measurements/new SPH                                                                                                                                                                                                               | 31.10.25 |
|    | Rough sensitivities and exploratory data<br>science to represent input-output of weather<br>conditions-breaking waves impacts. Data<br>shared and discussed within WAVECLIM to<br>decide on ideal resolution/time frequency of<br>the modelling.                    |          |
| 8. | Investigation of the relationships and drivers                                                                                                                                                                                                                      | 01.02.26 |
|    | Analysis of the meaning of the sensitivities and<br>possible physical understanding. Knowledge<br>shared and discussed within WAVECLIM to<br>refine variables and their characteristics of the<br>modelling.                                                        |          |
|    |                                                                                                                                                                                                                                                                     |          |



| 9. Impact on climate                                                                                                                                                                                                                                            | 01.04.26 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Initial understanding of the potential impacts on<br>climate (where/what/why). Data/modelling<br>shared and discussed outside WAVECLIM in a<br>workshop with climate scientists                                                                                 |          |
| 10. Analysis of longer climate runs<br>Measure of the benefits of a wave breaking<br>model into climate simulations. Data shared<br>and discussed outside WAVECLIM in<br>publications/conferences and open source<br>code.                                      | 31.07.26 |
| <ol> <li>Fitted ML model</li> <li>ML with validation and uncertainties. Model<br/>outputs shared and discussed within</li> <li>WAVECLIM to decide on ideal resolution/time<br/>frequency of the modelling.</li> </ol>                                           | 01.12.26 |
| 12. Fitted ML model into climate: software<br>Initial coupling and integration. Model outputs<br>shared and discussed within WAVECLIM to<br>decide on variables resolution/timings for<br>integration: stability, benefits, computations<br>and I/O.            | 01.03.26 |
| <ol> <li>fitted ML model into climate: software</li> <li>What input-outputs/how often/resolution.</li> <li>Knowledged shared and discussed within</li> <li>WAVECLIM to decide on variables</li> <li>resolution/timings for Machine Learning fitting.</li> </ol> | 01.05.26 |
| <ol> <li>Analysis of the impact under scenarios</li> <li>Computational burden and I/O issues.</li> <li>Knowledged shared outside WAVECLIM in<br/>publication and code to demonstrate<br/>cost/benefits.</li> </ol>                                              | 31.07.26 |
|                                                                                                                                                                                                                                                                 |          |



| University of        | 1. | Cruise planning                                  | 15.11.24          |
|----------------------|----|--------------------------------------------------|-------------------|
| Cambridge            |    |                                                  |                   |
|                      |    | participants training #2Completion of sea        |                   |
| (24 October<br>2024) |    | survival training and medicals                   |                   |
|                      | 2. | Cruise planning: float Procurement               | 30.10.24          |
|                      |    | Procurement of NKE floats                        |                   |
|                      | 3. | Cruise planning: glider and float shipping       | 30.11.24          |
|                      |    | Instrumentation shipping to Punta Arenas         |                   |
|                      | 4. | Cruise planning: meeting                         | 30.11.24          |
|                      |    | Meeting of all PIs and co-Is to discuss sampling |                   |
|                      |    | strategy                                         |                   |
|                      | 5. | Cruise completion                                | 15.02.25          |
|                      |    | Instrument deployment and seawater samples       |                   |
|                      |    | collection                                       |                   |
|                      | 6. | Cruise report                                    | 30.04.25          |
|                      |    | Summary of glider and float deployments          |                   |
|                      | 7. | Postdoctoral research                            | 01.04.25-30.06.25 |
|                      |    | Beginning of postdoctoral position to assess     |                   |
|                      |    | and analyse glider/float data                    |                   |
|                      | 8. | Glider data                                      | 31.12.25          |
|                      |    | Quality-controlled glider dataset completion     |                   |
|                      | 9. | Seawater lab analyses                            | 31.12.25          |
|                      |    |                                                  |                   |
|                      |    | Quality-controlled lab dataset completion        |                   |

10. Archive datasets

11. Postdoc presentation

Glider and seawater datasets published open

access following FAIR data principles

28.02.26

30.04.26



|                      | Present work at EGU conference                                                                 |          |
|----------------------|------------------------------------------------------------------------------------------------|----------|
|                      | 12. Glider data manuscript                                                                     | 31.12.26 |
|                      | Paper drafted                                                                                  |          |
|                      |                                                                                                | 01.10.07 |
|                      | 13. Float data                                                                                 | 31.12.26 |
|                      | Quality-controlled float dataset completion                                                    |          |
|                      | (please note that floats will be in the water for<br>multiple years and this dataset will keep |          |
|                      | growing over time, so this refers to the first                                                 |          |
|                      | year of data only; the analysis will naturally                                                 |          |
|                      | continue as more data is obtained and the                                                      |          |
|                      | dataset will be updated accordingly).                                                          |          |
|                      | 14. Seawater lab data manuscript                                                               | 31.07.27 |
|                      | Paper drafted                                                                                  |          |
|                      | 15. Float data manuscript                                                                      | 31.07.27 |
|                      | Paper drafted                                                                                  |          |
|                      | 16. End of project mini-conference                                                             | 30.08.27 |
|                      | Present results to stakeholders                                                                |          |
|                      |                                                                                                | 1        |
| Voltitude<br>Limited | Q1 Trade Space Results Presentation                                                            | 31.12.24 |
|                      | Reporting on the results of the StratoSat-75 trade space                                       |          |
| (27 August<br>2024)  | analysis; architectural design and sizing of the LLTA                                          |          |
|                      | aircraft; and sub-system requirements.                                                         |          |
|                      | Q2 Mission planning and requirements workshop                                                  | 31.03.25 |
|                      | Workshop Minutes/Presentation                                                                  |          |
|                      | Definition and validation of the target specification and                                      |          |
|                      | mission profile of the StratoSat-75 HAPS system, with                                          |          |
|                      | data end user input, including payload capacity,                                               |          |
|                      | payload interface, target payload list and CONOPS.<br>Q3 LLTA Flight Test Demonstrator Ready   | 30.06.25 |
|                      |                                                                                                |          |



|               | Presentation                                                      |            |
|---------------|-------------------------------------------------------------------|------------|
|               |                                                                   |            |
|               | Output from sub-system detailed design and                        |            |
|               | prototyping, system integration and LLTA acceptance               |            |
|               | test results in preparation for flight testing.                   |            |
|               | Q4 LLTA Flight Testing Progress and Preliminary Results           | 30.09.25   |
|               | Presentation                                                      |            |
|               | Presentation on the progress of flight testing, main              |            |
|               | achievements, test objectives coverage and remaining              |            |
|               | activities as well as preliminary results and implications        |            |
|               | for StratoSat-75 performance specification.                       |            |
|               | Q5 StratoSat-75 PDR, Mission Workshop and Final                   | 31.12.25   |
|               | Report                                                            |            |
|               | Workshop Minutes/Presentation                                     |            |
|               | Final Report                                                      |            |
|               | Dissemination of results to data end users, results of            |            |
|               | flight trial data analysis and verification evidence for          |            |
|               | target StratoSat-75 specification.                                |            |
|               | Proposed way forward for technology and product.                  |            |
|               |                                                                   |            |
| University of | Miniaturisation of the autophagous process previously             | 30/09/2025 |
| Edinburgh     | demonstrated by Desmulliez's group.                               |            |
| Ū             | , , ,                                                             |            |
| (18 September | Working example of miniaturised autophagous process.              |            |
| 2024)         | Definition and justification of the information                   | 31/11/2025 |
|               | transmission mean, such as, for example, wireless data            |            |
|               | transmission, or colourimetric passive sensor.                    |            |
|               | Report shared with ARIA.                                          |            |
|               | Manufacturing of functional prototypes suitable for               | 30.06.2026 |
|               | demonstration of the autophagy, sensing and                       |            |
|               | endurance capabilities.                                           |            |
|               | Delivery of functional prototypes.                                |            |
|               | Demonstration and characterisation of the autophagous capability. | 31.03.2027 |



| Report shared with ARIA.                              |            |
|-------------------------------------------------------|------------|
| Demonstration and characterisation of the sensing and | 31.03.2027 |
| data communication capability.                        |            |
| Report shared with ARIA.                              |            |
| Quantification and characterisation of the endurance. | 31.03.2027 |
| Report shared with ARIA.                              |            |

"Please note that some parts of the information have been withheld (as indicated by the following label: "[removed]"). This follows engagement with the third parties to which the information relates, who have not consented to its disclosure and who have made representations to ARIA that the disclosure of the information would result in commercial harm."

### 3. How many proposals were received in total for Scoping Our Planet opportunity seeds.

"ARIA received a total of 140 applications, and you can find details of the successful applicants on our website <u>here</u>, which contains a summary of their projects and research outputs."